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Abstract
A symbolic compiler translates a program to symbolic constraints, automatically reducing model
checking and synthesis to constraint solving. We show that new applications of constraint solving
require domain-specific encodings that yield orders of magnitude improvements in solver efficiency.
Unfortunately, these encodings cannot be obtained with today’s symbolic compilation.

We introduce symbolic languages that encapsulate domain-specific encodings under abstrac-
tions that behave as their non-symbolic counterparts: client code using the abstractions can be
tested and debugged on concrete inputs. When client code is symbolically compiled, the resulting
constraints use domain-specific encodings.

We demonstrate the idea on the first fully symbolic checker of type systems; a program
partitioner; and a parallelizer of tree computations. In each of these case studies, symbolic
languages improved on classical symbolic compilers by orders of magnitude.
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1 Introduction

A symbolic compiler translates a program p to constraints that model its behavior [3, 18, 20].
The unknowns in the constraints typically represent the symbolic inputs to p, and the solution
to the constraints is an input that induces a particular program behavior. For example, with
a symbolic compiler and a solver, by just writing program p, we obtain a program checker –
producing an input to p that leads to an assertion failure – for free.

The applications of symbolic compilation become even more interesting when the input
to the program p is itself a program:

If the program p is an interpreter, then constraint solving can find a program that forces
the interpreter into a violation due to unsoundness in its type system. In Section 3, we
explore finding such witnesses to unsoundness by symbolically compiling interpreters.
If p is a type checker, then constraint solving performs type inference. In Section 4, we
partition a program onto a many-core processor. We model this program transformation
with a hardware-specific place type system, relying on symbolic compilation of type
checkers to produce constraints for type inference.
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If p is an “execution runtime” for parallel programs, then constraint solving finds a
parallel execution strategy, effectively parallelizing p for us. In Section 5, we synthesize
parallel evaluators for attribute grammars by modeling the strategies as schedules and
symbolically compiling interpreters of such schedules.

More formally, assume we have access to a solver sol that accepts a constraint φ and
returns a solution, i.e., a value x such that φ(x) holds. If no such x exists, then sol returns
⊥. A symbolic compiler sym translates a program p into a logical formula φ that models the
input-output semantics of p. It is convenient to think of a symbolic compiler as an execution
inverter: sym accepts p and an output value y and produces a formula φ over the program
input variable x such that the solution x to φ makes the program output y.

Model checking and program synthesis are two common applications of symbolic compi-
lation. In bounded model checking, we want to compute a program input that leads to a
failure. First, we modify the program so that failed assertions exit the program, returning a
special value fail. The call sol(sym(p, fail)) produces the failing input if one exists.

In inductive synthesis, we have a sketch program def sk(x, h) = e where e uses an
(unknown) function h. We want to find a function f such that substituting f for h gives
sk the desired behavior. The behavior is often given with an input-output pair of values
(x0, y0), i.e., we want sk(x0, f) to evaluate to y0. In many settings, y0 is simply success or
fail. Symbolic compilation produces such a function f with the call sol(sym(sk(x0), y0)).
The notation sk(x0) is a partially applied function sk, i.e., a function of h. Note that to
produce a function, the solver need not be second-order; the function f can be represented
as a list of constants that define a derivation of the syntax of f from a suitable grammar.

Revisiting the three case studies clarifies the task of symbolic compilation:
Checking soundness of type systems. We want to check the type system of an interpreter
int that is composed of a type checker and an evaluator. Assume that the interpreter
outputs fail when a program passes the type checker but fails in the evaluator. The
call sol(sym(int, fail)) then finds a program that is deemed type-safe but encounters
a run-time violation. (We assume the interpreted programs have no parameters.) The
benefit of using symbolic compilation is that one needs just an implementation of the
interpreter. There is no need for fuzzers or tools that translate language semantics to
constraints.
Program partitioning. A spatial type system maps variables and operations to CPU cores,
partitioning the program. If the typechecker has two parameters, a program r and the
values of r’s type variables, then the call sol(sym(typechecker(r), success) produces the
type assignment to the program that partitions the program satisfying all program and
hardware constraints checked by the type checker. Symbolic evaluation produces type
constraints where unknowns are the type variables. Solving performs type inference.
Formulating type inference as constraint solving is nothing new, of course. Our goal
is to make this idea easier to apply by automatically obtaining high-performance type
inference from a type checker.
Parallelizing tree computations. We want to efficiently compute the attributes of a tree
t defined by an attribute grammar G. The parallel tree evaluator may need to perform
multiple tree traversals, some bottom-up, some top-down, some in-order, subject to value
dependences in G. The evaluation strategy can be described with a schedule of traversals.
The schedule language is defined with an interpreter that reads the grammar, the tree,
and the schedule. Symbolic evaluation of the interpreter can give us a legal schedule for
free with the call sol(sym(int(G, t), success). Constraint solving sidesteps the error-prone
process of analyzing the grammar and operationally constructing a valid schedule.
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2 Architectures for Symbolic Compilation

We discuss three approaches for generating constraints. We first compare two existing
architectures – constraint generators and general-purpose specializing symbolic compilers –
and then introduce domain-specific symbolic compilers.

We describe the architectures by composing interpreters, compilers, and specializers.
Borrowing the notation from [4], we summarize here their definitions:

interpreter int : JintK(p, x) = JpK x
compiler comp : JJcompK pK x = JpK x
specializer s : JJsK (p, xs)K xd = JpK(xs, xd)
symbolic compiler sym : JpK (JsolK (JsymK (p, y))) = y

2.1 Constraint generators
A generator gen reads a problem instance and produces constraints whose solution solves the
problem instance. As our running example, consider the synthesis of schedules for parallel
tree evaluation that we introduced above. The problem instance is an attribute grammar G
and the call sol(gen(G)) produces the schedule for G.1

Notice that a constraint generator gen is not asked to invert a program, unlike the
symbolic compiler sym. This frees the author of the generator to employ a clever problem-
specific encoding. For example, Gulwani et al. phrased synthesis of loop-free programs as
constraint-based synthesis of a network that connects available instructions [6]. Kuchcinski
solved scheduling and resource assignment by modeling a system as a set of finite-domain
variables [10]. Hamza et al. synthesized linear-time programs by converting an automaton
recognizing the input/output relation [7].

On the other hand, since the generator receives only a problem instance but not the
program to be inverted, the semantics of generated constraints must entirely come from the
author of the generator. Consider again the synthesis of schedules: sym received the schedule
interpreter, which it can use to automatically produce constraints that encode schedules. In
contrast, the semantics of schedules must be hard-coded into gen by the programmer.

Our running example shows why implementing generators is challenging. The programmer
needs to wrangle the semantics of three languages – the language of attribute grammars AG,
the language of schedules Sch, and the constraints language Φ – reasoning across a four-step
indirection:
1. The programmer reads the specifications of the three languages and writes a constraint

generator gen.
2. The generator gen reads the grammar G and outputs a constraint φ.
3. The solver sol reads φ and produces a solution σ.
4. The solution σ indirectly encodes a schedule s ∈ Sch.
5. The schedule s evaluates a tree according to the input grammar G ∈ AG.

The programmer must ensure that the generator written in Step 1 produces a schedule
that in Step 4 correctly encodes, say, in-order traversals and in Step 5 evaluates the tree
in accordance with the attribute grammar semantics. This reasoning may explain why in

1 The solution to constraints must be typically converted back to the problem domain. For example, if
using SAT constraints, a Boolean vector that solves the SAT problem is translated to a program in the
scheduling language. This code-generation problem is important but we ignore its automation in this
paper.
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our previous work on synthesizing schedules, we failed to fully debug our generator once the
schedule language became moderately sophisticated.

2.2 General-Purpose Specializing Symbolic Compilers
This is the architecture of Sketch [17] and to a large extent Rosette [20]. The architecture
has three components and relies heavily on specialization:
1. int : (D → D)L → D → D, an interpreter implemented in a metaprogramming language

Lm. The interpreter implements the language L of the input program p. It accepts the
program p : (D → D) and p’s input, producing p’s output.

2. s : (D → D → D)Lm → D → (D → D)Ls , a specializer of programs in Lm producing
programs in Ls. In particular, s will specialize int with respect to p, producing a residual
program intp.

3. xlate : (D → D)Ls → D → Φ translates a symbolic program to the language of
constraints Φ. xlate also receives the output value y ∈ D and produces a formula φ(x)
that is satisfied iff p(x) outputs y.

The symbolic compiler is thus sym(p, y) , xlate(s(int, p), y). In Rosette, Lm is a subset
of Racket maintaining many metaprogramming facilities of Racket; Ls is the symbolic
expression language; and C can be one of several subsets of SMT languages, such as the
bitvector language. Note that s and xlate are part of the framework, while int is developed
by the user.

The core of symbolic evaluation happens in the specializer which explores all paths of
the program, producing a functional residual program that reflects the shape of the final
constraints. The translator xlate performs algebraic optimizations followed by local code
generation from the residual program to the constraint language.

The downside of this architecture is that symbolic compilation must typically follow the
forward symbolic execution that merges constraints under their path conditions [9]. This
algorithm may suffer from path explosion and does not lend itself to constraints other than
SAT or SMT. Thus, integer linear programming (ILP) constraints – often domain-specific
and highly efficient – are often the constraints of choice produced by constraint generators.

2.3 Domain-specific symbolic compilers
We modify the specializing architecture by introducing a new abstraction for implementing
the interpreter of L. This interpreter, intLd, now has two parts:
1. intL, an interpreter of L implemented in the domain-specific symbolic language Ld.
2. intd, an interpreter of Ld implemented in a metaprogramming language Lm.

The symbolic compiler pipeline is now xlate(s(intLd , p), y)). Ideally, the interpreter
intd meets two informally stated properties: (1) symbolic evaluation of intd produces
easier-to-solve constraints; and (2) symbolic evaluation of intd is faster than that of int, for
example because Ld reduces path explosion.

This paper shows that domain-specific symbolic compilers can be implemented as a library
on top of a classical symbolic compiler such as Rosette [19]. The library provides a symbolic
language that implements the domain-specific encoding while hiding the encoding from both
the programmer and the underlying symbolic compiler.

In Section 3, we check type systems for soundness errors. We introduce a Bonsai tree that
serves as the symbolic input into a type checker and an interpreter, which are implemented
on top of the Bonsai library. Symbolic evaluation of the two components produces constraints
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that encode a space of abstract syntax trees (ASTs). The solution is a witness: a tree that
succeeds in the type checker but fails in the interpreter. The Bonsai tree has the usual
interface but internally produces a special encoding that allows symbolically evaluating the
interpreter on trees that are not necessarily syntactically correct or type correct. This is key
to finding witnesses, for the first time, without enumerating or sampling the program space,
allowing us to compute the witness for a tricky soundness bug [1].

In Section 4, we partition a program onto a many-core processor. Mapping of program
operations to cores is modeled with a place type system ensuring that each code fragment
fits into its core. Partitioning is thus type inference. To infer types, we symbolically evaluate
the type checker with respect to a program whose type variables are symbolic. We design a
symbolic language for querying properties of the symbolic location of a computation. Under
this abstraction, we switch from the standard SMT encoding to an ILP encoding. The
resulting ILP encoding solves previously inaccessible partitioning problems.

Finally, in Section 5, we synthesize parallel tree programs as used in page layout and
data visualizations. The programs are formalized as schedules for evaluation of attribute
grammars. We design a symbolic trace language, an abstraction for writing interpreters of
such schedules. Under this abstraction, we can (1) sidestep the expensive symbolic state
that is maintained by the standard symbolic evaluator and (2) switch from ensuring that all
dependences are met to ensuring that all anti-dependences are avoided.

3 Checking Type Systems with Bonsai Trees

Model checking of type systems. Bonsai uses model checking to search for soundness
errors in type systems. The user provides a typechecker and an interpreter for their language,
and Bonsai searches for a counterexample program that passes the typechecker while causing
the interpreter to crash. If such a counterexample can be found, then it is evidence of a
soundness bug in the type system. Furthermore, such a counterexample provides helpful
feedback for the user to understand and fix the bug. On the other hand, if no counterexample
can be found, the user has some assurance that the typechecker is sound.

The most common existing typechecker-checking technique is fuzzing. A fuzzer generates
random terms and uses them to test a typechecker and interpreter. Fuzzers may sample
from the space of syntactically-correct terms or the space of well-typed terms; however,
in both cases, the probability of generating a counterexample by chance is extremely low.
Thus, fuzzers often need hours or days of guessing to find even simple type checker bugs (an
example of a “simple” bug is assigning cons the return type a instead of Listof a).

Bonsai can be regarded as a final successor to typechecker fuzzing: rather than randomly
sampling from the space of syntactically-correct or well-typed terms, Bonsai symbolically
compiles an executable language specification to constraints, and then utilizes the backward
reasoning of a constraint solver to sample directly from the space of counterexamples. This
makes Bonsai much more efficient than traditional fuzzers: Bonsai finds the above bug in
just 1.3 seconds compared to hours or days needed by fuzzers.

Bonsai consists of the algorithm shown in Figure 1. First, Bonsai initializes a symbolic
representation of A, the set of all trees up to some maximum size m. Next, it computes
symbolic representations of the subsets of A that (a) are syntactically valid; (b) pass the
typechecker; (c) fail in the interpreter. Finally, it asks the solver to find a tree in the
intersection of these three sets. If such a tree exists, it represents a counterexample.
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Parser
✓

Type Checker
✓

Interpreter
✘

symbolic tree
represents all programs 

up to depth d

(define p 

(make-symbolic-program!))

syntactically correct programs

(assert (parser p))

programs failing in interpreter

(assert-not (interpreter p))

well-typed programs

(assert (typechecker p))

counterexamples
(define cex (solve))
(display cex)

rejected good programs

Figure 1 Bonsai performs three independent symbolic evaluations, interestingly executing the
interpreter also on trees that are both syntactically and type-incorrect.
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Figure 2 The classical symbolic representation of a set of trees grows very quickly even when
small trees are merged, even if their subtrees are shared.
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(a) Bonsai trees for x, λy.x, and x(y).

leaf node
internal node

𝑥

𝑦
λ

𝑥

𝐺(𝜆𝑦. 𝑥)𝐺(𝑥) 𝐺( 𝑥 𝑦 )

unused node𝑦𝑥

(b) Embedding (a) in perfect binary trees.
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(c) Symbolic encoding of the tree for λy.x.

G(if(𝜙1) 𝑥
elseif(𝜙2) 𝜆𝑦. 𝑥
elseif(𝜙3) (𝑦 𝑥)):

𝜙1 ⇒ leaf(𝑛1, 𝑥)
𝜙2 ⇒ leaf 𝑛2, λ ∧
𝜙3 ⇒ leaf(𝑛2, 𝑥)

𝜙3 ⇒ leaf(n5, y)

𝜙2 ⇒ leaf(n6, y)
𝜙3 ⇒ leaf(𝑛7, 𝑥)

(d) Merging three trees under path conditions φi.

Figure 3 A stepwise overview of the Bonsai tree encoding.
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General-purpose symbolic evaluation. To perform symbolic evaluation of a type checker,
we need to create a symbolic abstract syntax tree that represents A, the set of concrete
abstract syntax trees. The standard approach would produce trees such as those shown
in Figure 2, where sets of trees are merged by creating symbolic choices to select among
potential children at each node. This merged symbolic tree could then be supplied to an
existing type checker and interpreter by symbolically evaluating them on the tree.

Though this classical approach would work in principle, it fails to scale to trees that are
deep enough to explore large programs. Furthermore, each operation on such a symbolic tree
causes its representation to grow even more complex, and the large data structures prevent
scalable symbolic execution. Thus, the challenge here is to optimize the speed of symbolic
compilation, rather than the speed of solving.

Domain-specific symbolic evaluation. Bonsai solves this problem by creating a new en-
coding for sets of trees that limits growth by efficiently merging trees within the set. This
“Bonsai tree” is compatible with a standard symbolic evaluator, and language engineers can
use this symbolic tree nearly as if it were a concrete tree. Figure 3 gives a stepwise explanation
of the Bonsai symbolic tree, starting from concrete Bonsai trees for three program terms (a).
These concrete trees are embedded in a perfect binary tree (b). The embedding is represented
with two predicates for each node: the first determines whether the node is internal or a leaf;
the second determines the terminal for leaves (c). By allowing the predicates to be symbolic
expressions, a single tree can represent multiple Bonsai trees. In (d), we show how symbolic
Bonsai trees arise; here we merge three trees at an if-statement.

Despite having a different underlying representation, Bonsai trees can be easily manip-
ulated by programmers, just as if they were concrete trees. Bonsai provides utilities for
creating, modifying, and pattern-matching with symbolic trees, allowing programmers to
implement typecheckers and interpreters without having to focus on the details of symbolic
execution.

Evaluation. Figure 4a shows an empirical comparison between the classical and Bonsai
encodings. Symbolic terms of various sizes were executed with identical typecheckers and
interpreters, varying only the underlying encoding. Bonsai’s encoding was consistently several
orders of magnitude faster. In under an hour, Bonsai explores programs much larger than
counterexamples created by human experts who report soundness bugs, thus providing users
with a margin of assurance.

Bonsai has reproduced many soundness bugs in a variety of languages, notably including
(1) unsound argument covariance in a model of Java, and (2) a subtle issue with Scala’s
existential types, discovered in 2016 by Nada Amin and Ross Tate [1]. Slight modifications
to the algorithm also allow users to ask intriguing new questions that fuzzers cannot easily
answer, such as “On what programs do typecheckers t1 and t2 disagree?” or “Does my
typechecker reject programs that don’t fail?” Finally, by making the typechecker symbolic,
Bonsai can synthesize suggestions for how to fix an unsound type system.

4 Program Partitioning

The Code Partitioning Problem. Compilers for fine-grain many-core architectures must
partition the program into tiny code fragments mapped onto physical cores. Chlorophyll [15,
16] is a language for GA144, an ultra-low-power processor with 144 tiny cores [5]. The
Chlorophyll type system ensures that no fragment overflows the 64-word capacity of its core.
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Figure 4 Experimental evaluations.

Listing 1 Original type checker, ensuring that code fragments fit into cores.
1 ( define cores - space (make - vector n- cores 0)) ; space used up on each core
2 ( define (inc - space p size)
3 (vector -set! cores - space p (+ (vector -ref cores - space p) size )))
4
5 ; Increase code size whenever core p sends a value to core r.
6 ( define (comm p r) (when (not (= p r)) ( begin (inc - space p 2) (inc - space r 2))))
7
8 ; Increase code size for broadcast communication from p to ps. ps may contain duplicates .
9 ( define ( broadcast p ps)

10 ( define remote -ps ( length ( remove p ( unique ps )))) ;# of unique cores in ps excluding p
11 (inc - space p (* 2 remote -ps )) ; space used in the sender core
12 (for ([r ps ]) (inc - space r 2))) ; space used in the receiver cores
13
14 ( define (count - space node) ; Count space needed by an AST node .
15 ( cond
16 [( var? node) (inc - space (place -type node) 1)]
17 [( binexpr ? node) ; The inputs to this operation come from binexpr -e1 and binexpr -e2.
18 ( define p (place -type node ))
19 (inc - space p (size node )) ; space taken by the operation
20 (comm (place -type (binexpr -e1 node )) p) ; Add space for communication code when
21 (comm (place -type (binexpr -e2 node )) p)] ; operands come from other cores .
22 [( if? node)
23 ; If is replicated on all cores that run any part of if ’s body .
24 ; We omit inc - space here .
25 ; The condition result is broadcast to all cores used in if ’s body .
26 ( broadcast (place -type (if -test node ))
27 ( append (all - cores (if -then node )) (all - cores (if -else node ))))]
28 ...))
29
30 (tree -map count - space ast)
31 (for ([ space cores - space ]) ( assert (< space core - capacity )))
32 ( minimize ( apply + cores - space )) ; used during inference only

Each variable and operation have a place type whose value is a core ID. The type checker in
Listing 1 computes the code size of each fragment. The tree-map function traverses a program
AST in the post-order fashion and applies the function count-space on each node in the AST
(line 28). The checker accumulates the space taken by each node (e.g. a binexpr node on
line 18), and space occupied by communication code, for both one-to-one communication
(e.g. sending operand values to an operator on lines 19–20) and broadcast communication
(e.g. sending a condition result to all nodes in the body of if on lines 24–25).

Automatic Program Partitioning as Type Inference. When a program omits some place
types, the compiler infers them, effectively partitioning the program. Chlorophyll implements
the type inference using Rosette [19, 20], which symbolically evaluates the type checker in
Listing 1 with respect to the program. The type checker needs no changes; we only need to
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Listing 2 Type checker in resource language, producing ILP constraints.
1 ( define n (make - parameter #f)) ; a parameter procedure for dynamic binding
2 ( define (comm p r) (inc - space (n) (* 2 (+ ( different ? p r (n)) ( different ? r p (n ))))))
3 ( define ( broadcast p ps)
4 (inc - space (n) (* 2 (+ (count - different p ps (n)) ;; space used in the sender core
5 ( different ? ps p (n)) )))) ;; space used in the receiver cores
6
7 ;; the function count - space is changed in one place ( see text ); inc - space is unchanged
8
9 (for ([i n- cores ]) ( parameterize ([n i]) (tree -map count - space ast )))

10 (for ([ space cores - space ]) ( assert (< space core - capacity )))
11 ( minimize ( apply + cores - space ))

=

a

a

+

b

p$a

p$a p$b

p$+

> cores-space
#(;; core 0

(+ (ite (= p$a 0) 1 0) ;; (inc-space p$a 1)    
(ite (= p$a 0) 1 0) ;; (inc-space p$a 1)
(ite (= p$b 0) 1 0) ;; (inc-space p$b 1)
(ite (= p$+ 0) 1 0) ;; (inc-space p$+ 1)
(ite (and (or (= p$+ 0) (= p$a 0)) 

(! (= p$+ p$a))) 
2 0) ;; (comm p$a p$+)

(ite (and (or (= p$+ 0) (= p$b 0)) 
(! (= p$+ p$b))) 

2 0)) ;; (comm p$b p$+)

;; core 1
(+ ...))

> cores-space
#(;; core 0

(+ (* 1 Mpn(p$a,0)) ;; (inc-space p$a 1) [def]
(* 1 Mpn(p$a,0)) ;; (inc-space p$a 1) [use]
(* 1 Mpn(p$b,0)) ;; (inc-space p$b 1)
(* 1 Mpn(p$+,0)) ;; (inc-space p$+ 1)
(* 2 Remote_prn(p$+,p$a,0))  ;; (comm p$a p$+)
(* 2 Remote_prn(p$a,p$+,0)) 
(* 2 Remote_prn(p$+,p$b,0))  ;; (comm p$b p$+)
(* 2 Remote_prn(p$b,p$+,0)))

;; core 1
(+ ...))

> (asserts) ;; global assertions
((and (<= 0 Mpn(p$a,0)) (>= 1 Mpn(p$a,0)))  ;; from a
(and (<= 0 Mpn(p$a,1)) (>= 1 Mpn(p$a,1)))
(= 1 (+ Mpn(p$a,0) Mpn(p$a,1)))
...
(<= 0 Remote_prn(p$+,p$a,0))  ;; from (comm p$a p$+)
(>= 1 Remote_prn(p$+,p$a,0))
(>= Remote_prn(p$+,p$a,0) (- Mpn(p$+,0) Mpn(p$a,0)))
...

)

Residual Program
(inc-space p$a 1) ;; Line 17, node = a [def]
(inc-space p$a 1) ;; Line 17, node = a [use]
(inc-space p$b 1) ;; Line 17, node = b
(inc-space p$+ 1) ;; Line 17, node = +
(comm p$a p$+) ;; Line 18
(comm p$b p$+) ;; Line 19

(a) Example program AST. Each node is an-
notated with its place type below. The yellow
nodes are the ones that have been interpreted.

(inc - space p$a 1) ;; Line 15, node = a [def ]
(inc - space p$a 1) ;; Line 15, node = a [use ]
(inc - space p$b 1) ;; Line 15, node = b
(inc - space p$+ 1) ;; Line 18, node = +
(comm p$a p$ +) ;; Line 19, comm a -> +
(comm p$b p$ +) ;; Line 20, comm b -> +

(b) Residual type checking program after travers-
ing the yellow nodes in the AST on the left (post-
order). The line numbers in the comments indicate
where the expressions come from from Listing 1.

Figure 5 Running example of program partitioning

initialize the (unknown) place types in the program to symbolic values (i.e., p$0, p$1, ...).
Figure 5a shows an example of a program AST with unknown places. Each node in the AST

is annotated with its symbolic place type. Figure 5b shows the conceptual partially-evaluated
type checker after checking the yellow nodes in the example AST; concrete expressions are
fully evaluated, and the expressions with symbolic variables remain. After we symbolically
evaluate the residual type checker in Figure 5b, we obtain cores-space shown in Figure 6a.
Rosette then uses Z3 to solve the generated SMT constraints on cores-space (line 29 of
Listing 1) and minimize the total code size (line 30 of Listing 1).

Hence, we obtain our type inference just by implementing a type checker. The development
process requires little effort, but the type inference is slow at inferring place types.

Symbolic Evaluation to ILP Constraints. It is known that partitioning and scheduling
problems can be solved efficiently using ILP [21, 14, 13, 8]. However, if we follow the standard
way of generating ILP constraints, we will not be able to simply turn type checking into
type inference. Here, we turn to our key idea and introduce a symbolic language that will
generate ILP constraints. The programmer implements the type checker as before but in
our resource language. The programmer is prohibited from writing programs with symbolic
path conditions because these path conditions create non-linear constraints. If a program
contains a symbolic path condition, the compiler will raise an exception. Resource language
is embedded in Rosette. It provides additional operations: mapped-to?, different?, and
count-different, as described in Table 1.

We make four minimal changes to our original type checker, shown in Listing 2. First, we
traverse the AST once for every core (line 9). Each iteration i is responsible for accumulating
space used in core i. Second, in the function count-space, we change the expression to increase
the size of core p by the size of the operation of node from (inc-space p (size node)) to
(inc-space (n) (* (size node) (mapped-to? p (n)))). The previous call produces a non-
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> cores - space
#(;; core 0

(+ (ite (= p$a 0) 1 0) ;; a [def ]
(ite (= p$a 0) 1 0) ;; a [use ]
(ite (= p$b 0) 1 0) ;; b
(ite (= p$+ 0) 1 0) ;; +
(ite

(and (or (= p$+ 0) (= p$a 0))
(! (= p$+ p$a )))

2 0) ;; a -> +
(ite

(and (or (= p$+ 0) (= p$b 0))
(! (= p$+ p$b )))

2 0)) ;; b -> +

;; core 1
(+ ...)

)

(a) Original symbolic expression generated from
the original type checker (Listing 1)

> cores - space
#(;; core 0

(+ (* 1 Mpn(p$a ,0)) ;; a [def ]
(* 1 Mpn(p$a ,0)) ;; a [use ]
(* 1 Mpn(p$b ,0)) ;; b
(* 1 Mpn(p$ + ,0)) ;; +
(* 2 Remote_prn (p$+,p$a ,0)) ;; a -> +
(* 2 Remote_prn (p$a ,p$ + ,0))
(* 2 Remote_prn (p$+,p$b ,0)) ;; b -> +
(* 2 Remote_prn (p$b ,p$ + ,0)))

;; core 1
(+ ...))

> ( asserts ) ;; global assertions
(( and (<= 0 Mpn(p$a ,0)) (>= 1 Mpn(p$a ,0)))

(and (<= 0 Mpn(p$a ,1)) (>= 1 Mpn(p$a ,1)))
(= 1 (+ Mpn(p$a ,0) Mpn(p$a ,1))) ;; a
...
(<= 0 Remote_prn (p$+,p$a ,0)) ;; a -> +
(>= 1 Remote_prn (p$+,p$a ,0))
(>= Remote_prn (p$+,p$a ,0)

(- Mpn(p$ + ,0) Mpn(p$a ,0)))
...

)

(b) ILP symbolic expression generated from the
modified type checker (Listing 2)

Figure 6 Symbolic expression of space occupied in each core after running a type checker on the
yellow nodes in the example AST (Figure 5a).

Table 1 Description of resource language operations. Sym/conc stands for symbolic or concrete.

Function Type Description
(mapped-to? p n) p: sym/conc integer returns 1 if place p is core n

n: concrete integer (i.e. p = n),
return: sym/conc integer otherwise returns 0

(different? p r n) p: sym/conc integer returns 1 if places p and r
r: sym/conc integer are different, and place p is
n: concrete integer core n (i.e. (p 6= r) ∧ (p = n)),
return: sym/conc integer otherwise returns 0

(different? ps r n) ps: list of sym/conc integers returns 1 if there is at least
r: sym/conc integer one place p in ps such that
n: concrete integer (p 6= r) ∧ (p = n),
return: sym/conc integer otherwise returns 0

(count-different p rs n) p: sym/conc integer returns a number of unique
rs: list of sym/conc integers places in rs that differ from p

n: concrete integer if place p is core n,
return: sym/conc integer otherwise returns 0

linear equation because the first argument p, which is symbolic, to inc-space is used as a
path condition. Third, we avoid symbolic path conditions inside the function comm by using
(different? p r (n)) to compute the size of code for sending data at core (n), and similarly
for receiving data. Last, in the function broadcast, we utilize count-different to compute
space taken by code for broadcasting a value to a set of cores.

Implementation. Table 2 details the implementation of the additional operations provided
by our symbolic language. Under the abstraction, (mapped-to? p n) creates symbolic variables
Mpn(p, n′) for all n′ ∈ N – where N is a set of values that p can take – and returnsMpn(p, n);
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Table 2 Implementation of resource language operations. sum† and offset† are temporary
variables.

Function → return Created Variables Additional Assertions
(mapped-to? p n) ∀n′ ∈ N,Mpn(p, n′) ∀n′ ∈ N, 0 ≤Mpn(p, n′) ≤ 1
→Mpn(p, n)

∑
n′∈N

Mpn(p, n′) = 1
(different? p r n) Remoteprn(p, r, n) 0 ≤ Remoteprn(p,r,n) ≤ 1
→ Remoteprn(p, r, n) Remoteprn(p,r,n) ≥Mpn(p, n)−Mpn(r, n)
(different? p rs n) Remoteprsn(p, rs, n) 0 ≤ Remoteprsn(p,rs,n) ≤ 1
→ Remoteprsn(p, rs, n) ∀r ∈ rs,Remoteprsn(p, rs, n) ≥

Remoteprn(p, r, n)
(count-different p rs n) Countprsn(p, rs, n) ∀n ∈ N, 0 ≤M∗rsn(n) ≤ 1
→ Countprsn(p, rs, n) ∀n′ ∈ N,M∗rsn(n′) ∀n ∈ N, r ∈ rs,M∗rsn(n) ≥Mpn(r, n)

sum† =
∑

n′∈{N−{n}}M
∗
rsn(n′)

offset† = (Mpn(p, n)− 1)×MAXINT

Countprsn(p, rs, n) ≥ 0
Countprsn(p, rs, n) ≥ sum† + offset†

Mpn(p, n) = 1 if p = n, and Mpn(p, n) = 0 otherwise. Since p can be mapped to only
one value, the function adds the constraint

∑
n′∈N Mpn(p, n′) = 1 into the global list of

assertions. (different? p r n) creates and returns a variable Remoteprn(p, r, n), as well as
adds Remoteprn(p,r,n) ≥ Mpn(p, n)−Mpn(r, n) and 0 ≤ Remoteprn(p,r,n) ≤ 1 to the global
list of assertions. Note that Remoteprn(p,r,n) can be either 0 or 1 when p = r, which is not
what we want. However, this equation is valid if Remoteprn(p,r,n) is (indirectly) minimized,
so it is 0 when p = r as we expect. The validity check happens when minimize is called.

Our approach requires no change in Rosette’s internals. The additional operations simply
generate Rosette assertions. We implement our custom minimize function, which performs
the validity check before calling Rosette’s minimize.

Figure 6b show the symbolic expression of cores-space along with additional assertions
after symbolically executing the modified type checker on the yellow nodes of the AST in
Figure 5a. Notice that the new expression is linear, while the original one is not.

Evaluation. The ILP encoding produced by our abstraction solves problems inaccessible to
the SMT-based partitioner, and it is faster than the SMT encoding optimized for the domain
of partitioning problems (namely, flattening deeply nested ite expressions). Figure 4b shows
the median time to partition four benchmarks across three runs. We set the timeout to 30
minutes. In summary, SMT always timed out; domain-optimized SMT constraints solved
half of the benchmarks; the ILP encoding solved all benchmarks.

5 Synthesis of Parallel Tree Programs

Attribute Grammars and Static Scheduling. Tree computations such as document layout
for data visualization or CSS are naturally specified as attribute grammars [12]. For the sake of
efficiency, high-performance layout engines in web browsers schedule these tree computations
statically, by assigning the statement that computes an attribute to a predetermined position
in a sequence of tree traversals. Static scheduling avoids the overhead of determining
dynamically when an attribute is ready to be computed.

We express a static schedule for an attribute grammar as a program in a domain-specific
language of tree traversal schedules, LS . A schedule consists of tree traversal passes, each
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Listing 3 The original interpreter of tree
traversal schedules, intS .

1 ( define (intS G t s)
2 ( match s
3 [( seq s1 s2 )
4 (intS G t s1 )
5 (intS G t s2 )]
6 [( par s1 s2 )
7 ; check data independence of forward
8 ; and backward orders
9 (intS G (copy t) (seq s2 s1 ))

10 (intS G t (seq s1 s2 ))]
11 [( pre visits )
12 ( preorder ( visitor G visits ) t)]
13 [( post visits )
14 ( postorder ( visitor G visits ) t)]))
15
16 ( define (( visitor G visits ) node)
17 (let ([ class (get - class G node )])
18 (for ([ slot (get - slots visits class )])
19 (eval class node slot ))))
20
21 ( define (eval class node slot)
22 (let* ([ rule (get -rule class slot )]
23 [attr ( target node rule )])
24 (for ([ dep (get -deps node rule )])
25 ( assert ( ready ? dep )))
26 ( assert (not ( ready ? attr )))
27 (set - ready ! attr )))

Listing 4 The interpreter intST , written with
the symbolic trace language.

1 ( define (intST G t s)
2 ( match s
3 [( seq s1 s2 )
4 (intST G t s1 )
5 (intST G t s2 )]
6 [( par s1 s2 )
7 ( parallel
8 (intST G t s1 )
9 (intST G t s2 ))]

10 [( pre visits )
11 ( preorder ( visitor G visits ) t)]
12 [( post visits )
13 ( postorder ( visitor G visits ) t)]))
14
15 ( define (( visitor G visits ) node)
16 (let ([ class (get - class G node )])
17 (for ([ slot* (get - slots visits class )])
18 (fork ([ slot slot *])
19 (eval class node slot )))))
20
21 ( define (eval class node slot)
22 (let* ([ rule (get -rule class slot )]
23 [attr ( target node rule )])
24 (for ([ dep (get -deps node rule )])
25 (read dep ))
26 ( write attr)
27 (step )))

of which executes statements from the attribute grammar. For instance, the schedule
post{ Inner{w, h}, Leaf{w, h} } ; pre{ Inner{x, y}, Leaf{x, y} } performs a post-order
traversal computing w then h at both Inner and Leaf nodes and then performs a pre-order
traversal computing x then y at both Inner and Leaf nodes. A statement to execute is
indicated by the name of the target attribute, since attributes and statements to compute
them correspond one-to-one.

Listing 3 presents a definitional interpreter for the scheduling language LS . The interpreter
checks the correctness of a schedule on a given input tree. Among the checks are the absence
of reads from uninitialized attributes (line 25) and single assignment (line 26), which together
ensure that data dependencies are satisfied.

Schedule Synthesis. To synthesize a legal schedule, we first define the space of candi-
date schedules by creating a partially symbolic schedule, such as post{ Inner{??1, ??2},
Leaf{??3, ??4} } ; pre{ Inner{??5, ??6}, Leaf{??7, ??8} }, where ??i indicates a symbolic
choice ranging over the statements from the relevant node class (e.g., ??1 ranges over the
statements for Inner nodes). This schedule is desugared to a schedule-generating function
sch : D8 → LSch whose parameters control the symbolic choices ??i.

Note that the schedule is partly concrete; it specifies two concrete traversals, leaving
symbolic only the slots in the node visitors. This limited symbolic nature simplifies symbolic
compilation. To consider other traversal patterns, we can apply a standard technique for
prioritized enumeration of sketches [2].

General-Purpose Symbolic Evaluation. With the schedule-generating function sch in hand,
the call sol(sym(intS(G, t) ◦ sch, success)) synthesizes the slots for the partially concrete
schedule correct on a tree t. When evaluating a symbolic choice ??i, symbolic evaluation
considers each alternative concrete statement (line 18 in Listing 3), generates the constraints
stating that the dependencies are ready and the target has not been computed (lines 25 and
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Listing 5 Example LT program.
( define ??1 ( choose "x := y + z" "y := 2 * x" "x := 3"))
( define ??2 ( choose "x := y + z" "y := 2 * x" "x := 3"))
( define ??3 ( choose "x := y + z" "y := 2 * x" "x := 3"))
( define x ( alloc ))
( define y ( alloc ))
( define z ( alloc ))

(for ([??i ( list ??1 ??2 ??3 )]) ; execute a program with three slots
(fork ([ stmt ??i ]) ; for each possible statement in this slot

(let ([ var ( lookup (lhs stmt ))]
[expr (rhs stmt )])

(for ([ ref (refs expr )]) ; for all locations in the right - hand side
(read ref ))

( write var)
(step ))))

Table 3 Operations of the symbolic trace language LT (each returning (void) unless noted
otherwise), where host refers to the pure subset of the host language.

Operation Type Description
(choosev1 . . . vn) vi: concrete value returns a symbolic choice from the given

return: symbolic choice values, to construct a program hole ??
(alloc) return: concrete location returns a fresh concrete location
(read l) l: concrete location logs a read from the given location
(write l) l: concrete location logs a write to the given location
(step) advances the program to the next

statement
(fork ([xc])e) x: variable in host evaluates e for each concrete alternative of

c: symbolic choice c, bound to x, under an appropriate guard
e: expression in host

(parallele1e2) e1: expression in host evaluates e1 then e2 while checking for
e2: expression in host conflicting usage of locations

26), sets the target attribute as ready, updates the program state (line 27), and then merges
alternative states.

The constraints resulting from this evaluation present a challenge for the SMT solver. The
symbolic state encodes whether a concrete attribute is ready at a given execution step as a
function of symbolic choices (i.e., which statement goes into which slot). We hypothesize that
this state formulation prevents the solver to learn from failed guesses: if placing statement
s1 before s2 leads to a dependence violation, the solver will happily try to place s1 before s2
into some other pair of slots.

Domain-Specific Symbolic Evaluation. To make constraint solving more efficient, we
express the interpreter of schedules in the symbolic trace language LT . The syntax of this
language is summarized in Table 3, and a small example program in LT is shown in Listing 5.
The new version of the interpreter, intST , is in Listing 4.

The symbolic trace language understands only dependency relationships carried through
locations, write-once memory objects with fully abstract contents. A location l is generated
with (alloc) and used with (read l) and (write l). In the context of attribute grammars,
a location corresponds to a particular attribute somewhere in the tree.

As a trace program executes, we generate efficient ILP constraints for these correctness
conditions:
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Listing 6 Excerpt of the residual program in LT from partial evaluation of intST with respect
to the symbolic schedule sch, showing the call to (eval Inner root ??1).
; construct the symbolic schedule
( define ??1

( choose "self.x := 0" ; guard = b1,x

"self.y := 0" ; guard = b1,y

"self.w := left.w + right .w" ; guard = b1,w

"self.h := left.h + right .h")) ; guard = b1,h

...
; assign each attribute a freshly allocated location
(set! root.x ( alloc ))
(set! root.y ( alloc ))
...
; expansion of ( fork ([ slot slot *]) ( eval ??1 ))
; case for ??1 = " self .x := 0"
( write root.x #: guard {b1,x})
(step #: guard {b1,x})
; case for ??1 = " self .y := 0"
( write root.y #: guard {b1,y})
(step #: guard {b1,y})
; case for ??1 = " self .w := left .w + right .w"
(read root.left.w #: guard {b1,w})
(read root. right .w #: guard {b1,w})
( write root.w #: guard {b1,w})
(step #: guard {b1,w})
; case for ??1 = " self .h := left .h + right .h"
(read root.left.h #: guard {b1,h})
(read root. right .h #: guard {b1,h})
( write root.h #: guard {b1,h})
(step #: guard {b1,h})
...

1. Every location is written at most once.
2. Every read to a location is preceded by the write to that location.
3. Concurrent threads are data-independent (i.e., locations read by a thread are disjoint

from locations written by any concurrent thread).

Note that the symbolic trace language requires annotating with fork those code frag-
ments that must be explored under alternative symbolic choices. Each such choice eval-
uates under a guard (analogous to a path condition in traditional symbolic evaluation)
that records the current set of assumptions about symbolic choices. For instance, when
(fork ([x (choose x1 x2)]) ...) explores the path for x1, the current guard will be ex-
tended (since uses of fork may be nested) with the assumption that x = x1, and a similar
process then happens for x2. The fork is analogous to Rosette’s for/all and serves the
same role of controlling where alternative paths are merged.

Adopting the symbolic trace language requires only a handful of straightforward changes
to the interpreter in Listing 3, to turn its checks into trace events. The modified interpreter
is shown in Listing 4. Listing 6 shows an excerpt of the residual program generated by the
call s(intST(G, t) ◦ sch), where s is the program specializer.

Implementation. The symbolic trace language is implemented as an embedded domain-
specific language in Rosette. We leverage the restricted nature of LT to generate efficient
ILP constraints. We mention in this paper only the encoding of dependences, which was
responsible for the bulk of the improvement over the previous SMT encoding.

Collectively, the generated constraints must ensure that all dependences are satisfied, which
means that all reads from a location follow the write into that location. A straightforward
encoding is to require that the step counter of the read is higher than the step counter of the
write.
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However, a less obvious encoding improves the solver’s performance by several orders
of magnitude. Rather than ensuring that all dependences are met, we pose the equivalent
constraints ensuring that no antidependences exist, which means that the write must not
happen after any of the reads from the location. The advantage of ruling out antidependences
over requiring dependences is that in ILP, it seems easier to solve the constraint “if a write
happens here, then none of the reads must have happened before,” than it is to solve “if
a read happens here, then a write must have happened before.” We hypothesize that this
encoding wins over alternative ILP encodings because ruling out antidependences provides
the solver the analogue of conflict clauses that it would need to learn itself.

We want to point that the concept of antidependences does not exist in the original
schedule interpreter. A general symbolic compiler thus cannot switch from dependences to
ruling out antidependences. Doing so would require relative deep and global reasoning.

Evaluation. Figure 4c compares our domain-specific symbolic evaluator against the general-
purpose evaluator. We evaluate the performance of symbolic evaluation and constraint solving.
The benchmarks synthesize tree traversal schedules for an attribute grammar that encodes
the treemap data visualization [11]. For each attribute grammar, symbolic evaluation is done
with a set of example trees chosen by an automated tool to sufficiently cover the grammar.
An enumeration of candidate partially symbolic schedules is used. Each measurement is the
median value from three runs. The domain-specific encoding on the CPLEX solver improves
the solving time by three orders of magnitude.

6 Summary and Future Directions

Contribution to Solver-Aided DSLs. Our domain-specific symbolic compilation idea origi-
nated from solver-aided DSLs (SDSLs). SDSL is attractive because it is the most promising
technique we have today for automatically constructing program synthesizers: simply write
an interpreter, and obtain a symbolic compiler for free. SDSLs take advantage of the domain
in two ways. First, DSL programs are compact, reducing the search space explored by
synthesizers. Second, an interpreter for a DSL can be written to increase the opportunities
for specialization.

Rosette, its meta-language, and SMT solvers together served as an excellent tool to build
SDSLs. However, as we moved to larger and more complex problems, both the symbolic
compilation and solving emerged as a bottleneck. SMT solvers also ran out of steam. Our
proposed solution delivers the promise of building domain-specific synthesizers that can solve
larger, more complex problems. We show that a domain-specific symbolic compiler, built on
top of Rosette, can produce a custom encoding of constraints and utilize a more efficient
solver for that particular domain, such as an ILP solver.

Evaluation. Our ultimate goal is to obtain efficient constraints generated by an intuitive,
expressive abstraction. In this paper, we showed that our domain-specific symbolic compiler
can generate efficient constraints, reducing the time of solving and symbolic evaluation,
sometimes by orders of magnitude. We are encouraged that good constraints can be generated
by symbolically evaluating a program, as that opens new ways to write specifications.

Our findings are preliminary when it comes to expressiveness. While we are happy
with the experience of expressing our interpreters and checkers, we have not stressed the
abstractions enough to identify their limits. For example, we did not try to use the Bonsai
tree (Section 3) on type checkers that also perform inference; the resource language (Section 4)
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may need extensions to support runtime data migration; and the trace language (Section 5)
may fail on incremental tree evaluation because it needs data-dependent traversals that visit
only a subtree. These new applications may require new abstractions. However, we hope
that the three designs will serve at as an inspiration.

Checking the usage. Symbolic languages are not intended to be used without care, and
a type system should thus ensure proper usage of symbolic language operations. However,
the code using the abstraction can sometimes break the abstraction even through seemingly
unrelated code (because the client and the abstraction are symbolically evaluated together).
For example, using a conditional expression in the partitioning type checker (Listing 2)
may cause the symbolic evaluation to produce a symbolic path condition, which makes the
program inexpressible in ILP constraints. It is an open question what restrictions we should
impose on the client to avoid such surprises.

Combining symbolic languages. New challenges arise when we compose two symbolic
languages. For example, to distribute nodes of an unbounded tree onto CPU cores, we
may want to combine some variants of the trace language from Section 5 and the resource
language from Section 4. The former would schedule traversals while the latter would map
data onto cores. What do we expect when both languages are used in the same interpreter?
If scheduling and data placement happen to be separate problems, it would be desirable if the
symbolic compilation of the interpreter produce two independent sets of constraints. If the
problems are intertwined, the interpreter writer should be able to control the approximation:
for example, fix the tree distribution first, then find the best traversal strategy.

Converting solutions to programs. We have blissfully assumed that the solution returned by
the solver is the desired program. Naturally, the solution must be converted to program syntax,
and the conversion becomes trickier as we add more levels of abstraction. Specializing symbolic
compilers (Rosette [20] and Sketch [17]) automate the conversion, but that functionality
is broken by our insertion of the symbolic language layer. It seems possible to define the
conversion as an inversion of symbolic compilation, and perhaps this view could lead us
towards automatic construction of solution-to-program converters.
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